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Many properties of heavy nuclei can be described in terms of the statistical level density. The level 

density 𝜌(𝐸, 𝐴), where 𝐸 and 𝐴 are the nuclear energy and particle number of an isotopically symmetric 
nucleus, can be calculated by the inverse Laplace transformation of the partition function 𝒵(𝛽, 𝛼), where 
𝛽 and 𝛼 are the Lagrange multipliers, respectively. Within the grand canonical ensemble, the standard 
Darwin-Fowler saddle point method (SPM) can be applied for the inverse Laplace integration over all 
variables, including 𝛽, which is related to the total energy 𝐸, but for large excitation energy 𝑈. As usually 
assumed, the temperature 𝑇 is related to the well-determined saddle point in the integration over 𝛽 for a 
finite Fermi system of a large particle number 𝐴. However, many experimental data also exist for low-lying 
excitation energies 𝑈, where such a saddle point does not exist. Therefore, the integral over the Lagrange 
multiplier 𝛽 should be carried out [1] more accurately beyond the standard SPM. For another variable, 
related to the number of nucleons, one can apply the SPM assuming that particle number 𝐴 is relatively 
large. In this work, we remove divergence at the critical catastrophe point for zero excitation energy limit 
of 𝜌(𝐸, 𝐴) and study the shell effects in the level density parameter versus the experimental data by using 
the periodic orbit theory (POT). 

Taking more accurately the inverse Laplace integral over Lagrange multiplier 𝛽 we have derived 
analytically the level density𝜌(𝐸, 𝐴) in terms of the modified Bessel function 𝐼!(𝑆) of the entropy 𝑆, 𝜌 ∝
𝑆"!𝐼!(𝑆). Here, 𝑆 = 2(𝑎𝑈)# $⁄ , where 𝑈 is the excitation energy, 𝑈 = 𝐸 − 𝐸&, 𝐸& is the background 
energy, 𝐸& ≈ 𝐸'() + 𝛿𝐸, 𝐸'() is the smooth extended  Thomas-Fermi (ETF) part of the background energy 
𝐸& [2], and 𝛿𝐸 is the shell correction energy. The level density parameter 𝑎 is proportional to the 
semiclassical POT level density, 𝑔(𝜆), with the decomposition in terms of the ETF 𝑔'()(𝜀) [2] and shell 
corrections 𝛿𝑔(𝜀) components, where both are taken at the chemical potential 𝜆, 𝜀 = 𝜆, 𝑔(𝜆) ≈ 𝑔*+,(𝜆) +
𝛿𝑔(𝜆), for which one has the well-known analytical expressions. The modified Bessel function 𝐼!(𝑆) of 
the order 𝜈 is determined by the number of integrals of motion 𝜅, except the energy (for the one particle 
number integral of motion 𝐴, we have 𝜅 = 1). We obtained values of 𝜈 = 3 2⁄  for the case of relatively 
small shell-correction effects (𝜈 = 𝜅 2⁄ + 1) and 𝜈 = 5 2⁄  for the case of large shell correction effects (𝜈 =
𝜅 2⁄ + 2). 

Fig. 1 shows the inverse level density parameter 𝐾 = 𝐴 𝑎⁄  as function of the particle number 𝐴 of 
symmetric nuclear system in the semiclassical POT approximation. The results of these calculations [1] are 
in a qualitative agreement with the recent experimental data [3], which included in the analysis the excited 
states in much more nuclei than those known earlier for neutron resonances. For the oscillating shell 
correction 𝛿𝑔(𝜀), for simplicity, we used the well-known explicitly given POT result for the infinitely deep 
square well potential because the only single-particle states near the Fermi surface essentially contribute to 
𝛿𝑔(𝜀). Its Gaussian averaging with the width 𝛾 = 0.3 has been calculated analytically, which almost 
identically coincides with the corresponding quantum results of the Strutinsky shell correction method, and 
it is well describes the major shell structure. The smooth part 𝑔'()(𝜀) is calculated on the basis of the 
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realistic Skyrme forces SKM* and KDE0v1 with the effective mass [2]. The positions of maxima of the 
level density parameter 𝑎 (or oscillating level density 𝛿𝑔(𝜀)) cannot be accurately reproduced because of 
neglecting the spin-orbit interaction. However, according to the POT results for the isomeric state in 240Pu, 
we took into account the effect of the spin-orbit forces effectively by shifting the curve 𝐾(𝐴) in about the 
period of the major shell structure, 𝛥𝐴 = 20, along the 𝐴 axis. In spite of very simple explicitly analytical 
calculations of the inverse level density parameter 𝐾, the magnitudes of the periods for the oscillations of 
𝐾(𝐴) are basically in good agreement with data for particle numbers of the order of 45-150. However, there 
is a discrepancy for particle numbers in the range of 150-240 for several reasons. Experimental data for 𝐾 
were obtained [3] in good agreement with those for neutron resonances because they are dominating in the 
specific least mean-square fit using relatively large widths. For this nuclear range the low excitation 
energies spectra are dramatically different than those of neutron resonances. Another reason might be that 
the pairing effects should be taken into account along with the shell structure, e.g., in magic nucleus 208Pb. 
Especially for nuclei in this low excitation energy range, we need the model-independent results of 
experimental data for level density; see Ref. [1]. 

 
Fig. 1. The inverse level-density parameter 𝑲 = 𝑨 𝒂⁄  (solids “1” for SKM* and “2” for KDE0v1 forces) 
is shown as function of the particle number 𝑨. The smooth part in the ETF approach is taken from Ref. 
[2] for these two versions of the Skyrme forces SKM* (“3” dashed) and  KDE0v1 (“4” dashed). The solid 
oscillating curves are obtained by using the semiclassical POT approximation for the shell corrections 
𝜹𝒈(𝜺) of the single-particle density 𝒈(𝜺) with the Gauss width averaging parameter 𝜸 = 𝟎. 𝟑 in 
dimensionless energy units 𝒌𝑹 where 𝒌 = (𝟐𝒎𝜺 ℏ𝟐⁄ )𝟏 𝟐⁄ , 𝑹 is the radius of a spherical system, 𝒎 is the 
particle mass (see Ref. [1]). The dashed curves “3” and “4” present smooth parts, both include the 
important effective mass contribution. The chemical potential is 𝝀 = 𝟒𝟎 MeV. Experimental values, 
shown by solid points, are taken from Ref. [3]. 
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